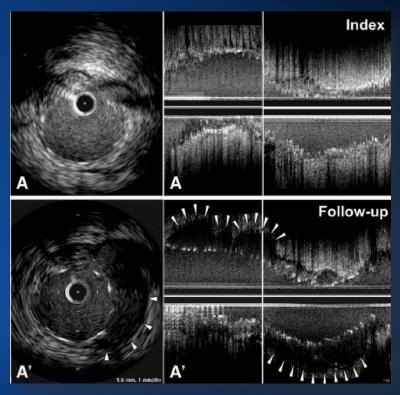
Incidences, predictors, and clinical outcomes of acute and late stent malapposition detected by OCT after DES implantation

Byeong-Keuk Kim, MD, PhD & Myeong-Ki Hong, MD, PhD

Division of Cardiology, Severance Cardiovascular Hospital Yonsei University College of Medicine, Seoul, Korea

SEVERANCE CARDIOVASCULAR HOSPITAL


YONSEI UNIVERSITY COLLEGE OF MEDICINE

Background - I

Coronary stent malapposition is the separation of at least one stent strut from the intimal surface of the coronary arterial wall without involvement of side branches.

In the era of DES, late-acquired stent malapposition is regarded as a potent substrate for late stent thrombosis.

Karalis I, et al. *Heart* 2012;98:1529-1536 Hassan AK, et al. *Eur Heart J* 2010;31:1172-1180 Ozaki Y, et al. *Eur Heart J* 2010;31:1470-1476

Tsujita K, JACC Interv 2009

Background - II

- In previous studies, stent malapposition (SM) was detected by an IVUS, which may not completely detect stent malapposition due to limited axial resolution (100-200µm) or stent-related artifacts.
- However, optical coherence tomography (OCT) with a higher resolution (12-18µm) may detect stent malapposition with greater accuracy.

Kim WH, et al. Clin Res Cardiol 2010;99:639-644

YONSEI UNIVERSITY COLLEGE OF MEDICINE

 We investigated the incidences, predictors, and clinical outcomes of acute and late stent malapposition detected by OCT in daily clinical practice in a large number of patients who received DES.

Methods

Study population

 Patients who received DES for de novo coronary lesions between 2009 and 2011 with post-stent and follow-up OCT were identified from the YONSEI OCT registry database.

Exclusion criteria

- (1) DES implanted for left main coronary disease.
- (2) Overlapping DES implanted in the lesion.
- (3) Clinical follow-up period after implantation of DES < 12 months.
- (4) Follow-up OCT > 21 months after DES implantation
- (5) Poor quality of OCT image .

Ultimately, 351 patients with 356 lesions were enrolled in this study

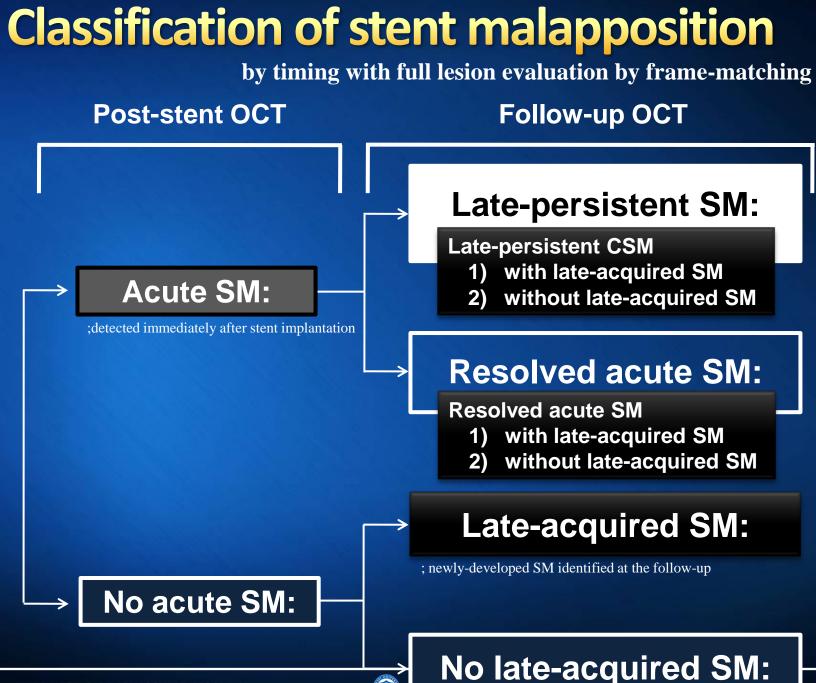
OCT imaging & analyses

- Two OCT systems (Model M2 and C7-XR[™] Imaging System)
- Analyzed at 1-mm intervals.
- Percentage of malapposed struts (%)

number of malapposed struts

x 100

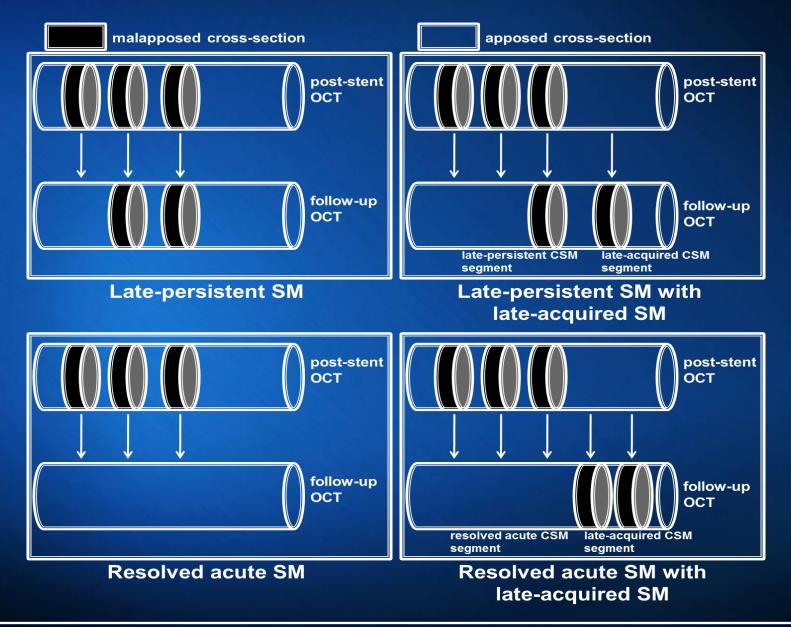
total number of struts in all cross-sections of the lesion


Malapposed strut:

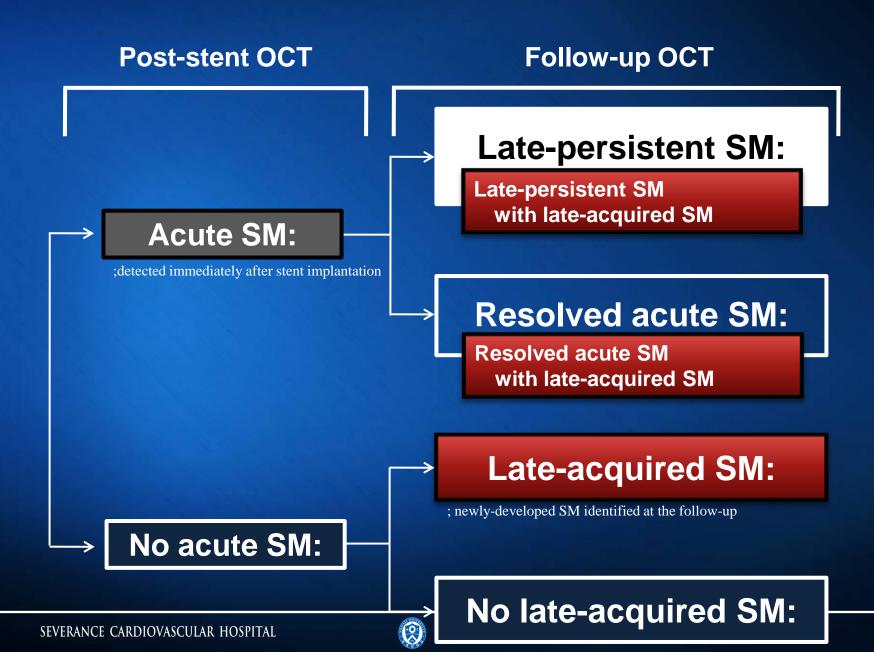
=

Defined as a strut that was detached from the vessel wall as follows

- 1) Cypher[™], ≥160 μm;
- 2) Resolute[®] or IntegrityTM, \geq 110 µm;
- 3) Xience V[®], ≥100 μm;
- Nobori[®] or Biomatrix[™], ≥130 µm



SEVERANCE CARDIOVASCULAR HOSPITAL



Classification of acute SM lesions according to post- and follow-up OCT

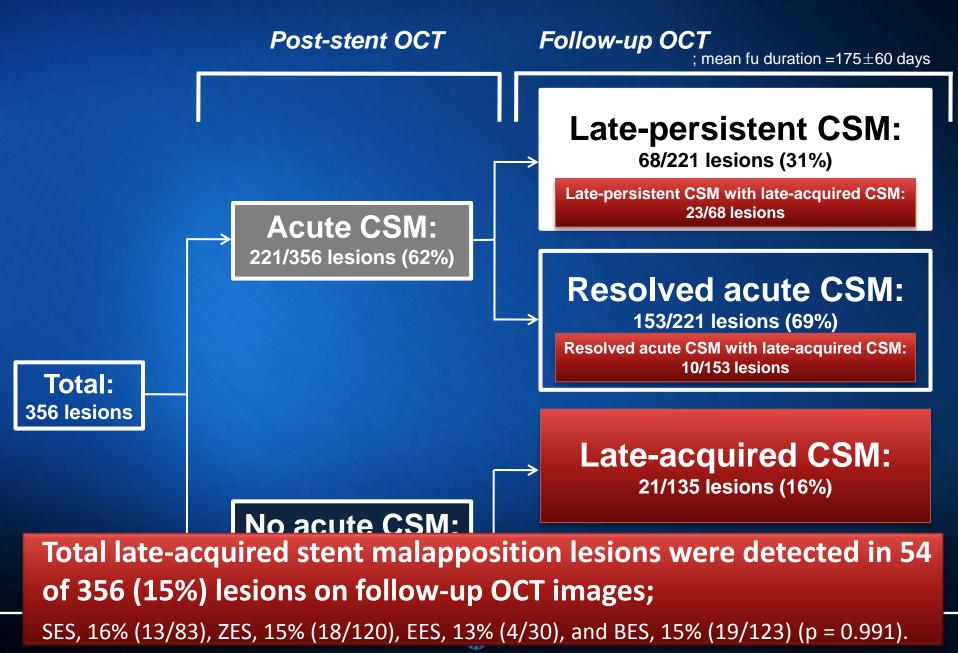
True late-acquired stent malapposition by serial OCT evaluation

Statistical analyses

- Multivariate logistic regression analyses for the identification of the independent predictors of acute, late-persistent, and late-acquired SM
 - Variables with p-values <0.2 from univariate analyses were included in multivariate analyses.
 - In case of multi-collinearity problem (variance inflation factor > 10), a representative variable were selected among highly correlated covariates considering effect estimates and p-values.
- ROC analyses for the best cut-off value of separated late-persistent SM lesions from resolved acute SM lesions.
- Cumulative incidences of clinical events during the follow-up
 - ✓ Kaplan-Meier method using log-rank tests.

Results

Baseline characteristics


Clinical characteristics	n=351 patients
Age, years	68.9±18.4
Male	240 (68%)
Clinical presentation of acute coronary syndrome	106 (30%)
Cardiovascular risk factors	
Hypertension	211 (60%)
Diabetes mellitus	104 (30%)
Dyslipidemia	189 (54%)
Current smoking	71 (20%)
Procedural characteristics	n=356 lesions
Lesion in left anterior descending artery	200 (56%)
B2- or C-type lesion	156 (44%)
Calcified lesion	59 (17%)
Type of stent	
Sirolimus-eluting stent (Cypher TM)	83 (23%)
Zotarolimus-eluting stent (Endeavor® Resolute/Resolute Integrity TM)	120 (34%)
Everolimus-eluting stent (Xience V®)	30 (8%)
Biolimus A9-eluting stent (Nobori [®])	52 (15%)
Biolimus A9-eluting stent (Biomatrix TM)	71 (20%)
Post-dilation, n (%)	198 (55%)

QCA analysis

Lesions	n=356
Reference vessel diameter, mm	3.0 ± 0.4
Minimal lumen diameter, mm	
Pre-intervention	1.0 ± 0.5
Post-intervention	2.7 ± 0.4
Follow-up	2.5 ± 0.5
Diameter stenosis, %	
Pre-intervention	65 ± 15
Post-intervention	11 ± 8
Follow-up	15 ± 12
Lesion length, mm	17.7 ± 6.4
Stent diameter, mm	3.2 ± 0.4
Stent length, mm	18.9 ± 5.2

Incidences of acute and late stent malapposition

Predictors of acute stent malapposition

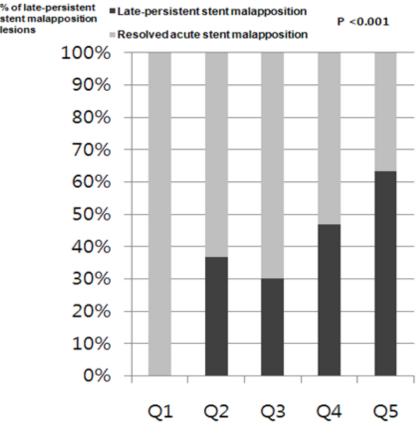
	Univ	variate analysis	Multivariate analysis			
	Acute SM lesions (n=221)	No acute SM lesions (n=135)	р	Odds ratio	95% CI	р
Post-stent OCT						
Acute malapposed struts, %	5.2±6.2	0				
Maximum acute SM CSA, mm ²	1.16±0.69	0				
Acute SM volume, mm ³	3.05±3.67	0				
Acute SM volume, % (of stent volume)	2.4±2.6	0				
Acute SM within stent edges	116 (53%)	0				
Reference vessel diameter, mm	3.02±0.41	2.88±0.45	0.025	1.22	0.51-2.92	0.650
Baseline diameter stenosis >70%	61 (28%)	17 (13%)	0.001	2.45	1.19-5.06	0.015
Calcified lesion	55 (25%)	4 (3%)	<0.001	11.19	3.52-35.63	<0.001
Stent length >25 mm	32 (15%)	10 (7%)	0.045	3.80	1.11-13.03	0.033

Predictors of late-persistent SM

	Univ	ariate analysis	Multivariate analysis			
	Late- persistent SM lesions (n=68)	Resolved acute SM lesions (n=153)	р	Odds ratio	95% CI	р
Follow-up OCT						
Time intervals after index procedure, days	175±40	176±70	0.808			
Late-persistent malapposed struts, %	2.5±3.6	0				
Maximum late-persistent SM CSA, mm ²	0.88±0.71	0				
Late-persistent SM volume, mm ³	1.28±2.16	0				
Late-persistent SM volume, % (of stent volume)	1.1±1.8	0				
Late-persistent SM within stent edges	50 (74%)	0				
Post-stent OCT						
Acute malapposed struts, %	6.6±5.8	4.5±6.3	0.022*			
Maximum acute SM CSA, mm ²	1.46±0.74	0.99 ± 0.60	0.001*			
Acute SM volume, mm ³	4.64±4.48	2.19±2.81	0.001	1.17	1.01-1.35	0.044
Acute SM volume, % (of stent volume)	3.3±3.1	1.9±2.2	0.005*			
Acute SM within stent edges	49 (72%)	67 (44%)	<0.001	6.31	2.03-19.60	0.001
Reference vessel diameter, mm	30 (44%)	43 (28%)				
Stent diameter, mm	19 (28%)	24 (16%)				

SEVERANCE CARDIOVASCULAR HOSPITAL

* excluded from multivariate analysis because of multi-collinearity problem.


Receiver-operating curve demonstrating the best cut-off value for acute SM volume, separating late-persistent SM lesions from resolved acute SM

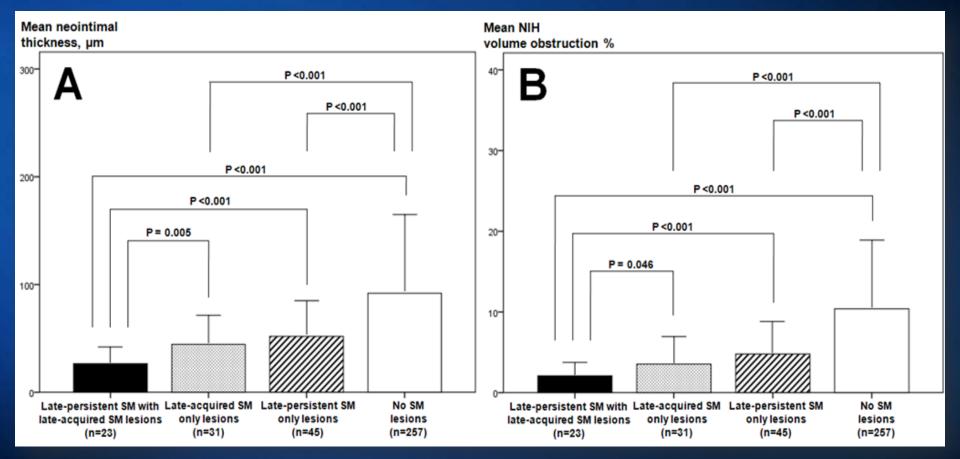
Percentage of late-persistent SM lesions according to the quintiles of total acute SM area

Α 1.0 Acute stent malapposition volume: 2.56 mm³ 0.8 Sensitivity 0.6 Sensitivity: 62% Specificity: 75% 0.4 area under curve = 0.739, 95%CI = 0.658 - 0.819 0.2 0.0 0.2 0.0 0.40.6 0.8 1.0 1 - Specificity

в

lesions

Q = quintiles of total acute stent malapposition area/stent


YONSEI UNIVERSITY COLLEGE OF MEDICINE

Predictors of late-acquired SM

	Univariate analysis			
	Late-acquired SM lesions (n=54)	No late-acquired SM lesions (n=302)	р	
Follow-up OCT				
Time intervals after index procedure, days	173±43	175±63	0.841	
Late-acquired malapposed struts, %	3.8±4.5	0		
Maximum late-acquired SM CSA, mm ²	0.95±0.90	0		
Late-acquired SM volume, mm ³	2.06±3.24	0		
Late-acquired SM volume, % (of stent volume)	1.7±3.1	0		
Late-acquired SM within stent body	33 (61%)	0		
Acute coronary syndrome*	18 (33%)	88 (30%)	0.586	
Dyslipidemia*	34 (63%)	155 (52%)	0.144	
B2- or C-type lesion	24 (44%)	132 (44%)	0.745	
Baseline diameter stenosis, %	69±20	65±14	0.299	
Stent diameter, mm	3.22±0.37	3.14±0.36	0.178	
Stent length, mm	19.0±5.4	18.9±5.1	0.955	
Post-stent OCT				
Plaque/thrombus prolapse	38 (70%)	128 (42%)	<0.001	

Comparison among 4 groups according to the presence or absence of late-persistent SM and late-acquired SM on follow-up OCT

✓ Lesions classified as late-persistent SM with late-acquired SM had the smallest NIH thicknesses and lowest percentages of NIH volume obstruction

Clinical outcomes

	Overall patients (n=351)	Both late- persistent and late-acquired SM (n=23)	Late-acquired SM alone (n=31)	Late- persistent SM alone (n=45)	No SM (n=252)	p
Follow-up duration after PCI, months	28.6±10.3	24.3±4.3	27.7±10.0	28.4±9.2	29.1±10. 8	0.175
Follow-up duration after follow-up OCT, months	22.8±10.4	18.4±4.4	22.0±10.4	22.6±8.9	23.3±10. 9	0.180
Composite of clinical events	10 (5.5%)	0 (0%)	1 (3.2%)	1 (3.2%)	8 (6.0%)	*
Cardiovascular death	1 (1.3%)	0 (0%)	0 (0%)	0 (0%)	1 (1.6%)	*
Non-fatal myocardial infarction	1 (0.3%)	0 (0%)	0 (0%)	0 (0%)	1 (0.4%)	*
Stent thrombosis	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	*
Target lesion revascularization	8 (4.0%)	0 (0%)	1 (3.2%)	1 (3.2%)	6 (4.1%)	*
Duration of dual anti-platelet therapy, months	14.2±8.2	11.9±5.3	15.5±6.4	13.8±7.1	14.3±8.7	0.417
At least 12 months of dual anti- platelet therapy	262 (75%)	15 (65%)	27 (87%)	36 (80%)	184 (73%)	0.199

SEVERANCE CARDIOVASCULAR HOSPITAL

YONSEI UNIVERSITY COLLEGE OF MEDICINE

To the best of our knowledge, this is the first study to investigate OCT-detected acute and late SM in a large number of patients in clinical practice.

- The incidence of stent malapposition detected by OCT was relatively high; 62% on post-OCT
- Predictors for acute SM were 1) severe stenosis, 2) calcified lesions, and 3) longer stent length.
- Predictors of late-persistent SM were 1) the presence of acute SM within the stent edge and 2) a larger volume of acute SM.
- Late-acquired SM was associated with plaque/thrombus prolapse detected on post-stent OCT images.
- Long-term clinical outcomes of SM detected by OCT were favorable.

Limitation

The present study may have potential selection bias due to the characteristics of cross-sectional investigation and exclusion of the overlapping DES-treated lesions.

Pre-intervention OCT was not performed.

Conclusion

 OCT-detected stent malapposition was frequently observed and had specific predictors.

 Long-term clinical outcomes were favorable in stent malapposition detected by OCT.

